Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in complete form.

(06 Marks)

- b. Two particles having charges 2nc and 5nc are spaced 80cm apart. Determine the \overline{E} at a point is situated at a distance of 0.5m from each of the two particles. Use $\varepsilon r = 5$. (Use Bakelite medium).
- c. Identical point charges of 3µc are located at the four corners of the square of 5cm side, find the magnitude of the force on any one charge? (08 Marks)

OR

2 a. Derive expression for E due to infinite line charge from first principle.

(08 Marks)

- b. Two uniform line charges of density 4n c/m and 6n c/m lie in x = 0 plane at y = +5m and -6m respectively. Find E at $(4, 0, 5)^m$.
- c. Define E and D, Hence establish the relation between D and E.

(06 Marks)

Module-2

3 a. State and prove Gauss divergence theorem.

(06 Marks)

b. If $D = \frac{5r^2}{4} \hat{a}_r c/m^2$. (in spherical system) then evaluates both sides of the divergence theorem

for the volume enclosed by r = 4m, and $\theta = \pi/4$ radians.

(08 Marks)

c. Prove that $\rho_v = \nabla \cdot D$.

(06 Marks)

OR

4 a. Establish relation $E = -\nabla y$

(06 Marks)

b. Electrical potential at an arbitrary point in free space is given as $V = (x+1)^2 + (y+2)^2 + (z+3)^2$ Volts at p(2, 1, 0). Find:

i) V ii)
$$\overline{E}$$
 iii) $|\overline{E}|$ iv) $|\overline{D}|$ v) ρ_v

(08 Marks)

Derive continuity of current equation.

(06 Marks)

Module-3

- 5 a. Derive Laplace and Poisson's equations and write Laplace Equation in all 3 co-ordinate systems. (08 Marks)
 - b. State and prove uniqueness theorem.

(07 Marks)

c. Calculate the numerical values for V and ρ_v at P in free space if $V = \frac{4yz}{x^2 + 1}$ at P(1, 2,3).

(05 Marks)

OR

a. An assembly of two concentric spherical shells is considered. The inner spherical shell is at a distance of 0.1m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2m and at a potential of 100V. The medium between them is a free space. Find \overline{E} and \overline{D} using spherical co-ordinate system. (06 Marks)

b. State and prove Ampers circuital law.

(08 Marks)

c. At a point P(x, y, z) the components of vector magnetic potential \overline{A} are given as

Ax = 4x + 3y + 2z

Ay = 5x + 6y + 3z and

Az = 2x + 3y + 5z

Determine \overline{B} at point P and state its nature.

(06 Marks)

Module-4

- 7 a. Derive an expression for the force on a differential current element placed in a magnetic field and deduce the result for straight conductor in a uniform magnetic field. (08 Marks)
 - b. A point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction

 $\bar{a}_v = 0.6 \,\hat{a}_x + 0.75 \,\hat{a}_v + 0.3 \,\hat{a}_z$.

Calculate the magnitude of the force exerted on the charge by the field

- i) $\overline{E} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z K v/m$
- ii) $\overline{B} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z MT$
- iii) $\overline{B} \& \overline{E}$ acting together.

(06 Marks)

c. State and explain Lorentz force equation.

(06 Marks)

OR

8 a. Define: i) Magnetization ii) Permeability.

(04 Marks)

b. If $\overline{B} = 0.05 \text{ x â}_y \text{ T}$ in a material for which magnetic susceptibility $X_m = 2.5$. Find

i) 11. ii) 11. ii

iii) \overline{H} iv) \overline{M}

v) \overline{J} vi) \overline{J}_h

(08 Marks)

c. Discuss the boundary conditions at the interface between two media of different permiabities? (08 Marks)

Module-5

9 a. Derive Maxwell's Equations in point form and Integral form for Time varying fields.

(08 Marks)

- b. For a lossy dielectric $\sigma = 5$ s/m, $\epsilon_r = 1$ the electric filed intensity is E = 100 sin 10^{10} t. Find J_c and J_d and frequency at which both have Equal Magnitudes. (04 Marks)
- c. Starting from Maxwell's Equation Derive the wave equation for a uniform plane wave travelling in free space. (08 Marks)

OR

10 a. State and prove Poynthing theorem.

(08 Marks)

- b. Deduce the expressions for α and β for a uniform plane wave propagation in good conducting medium. (06 Marks)
- c. Wet Marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At the frequencies 60Hz, 1 MHz, 100 MHz and 10 GHz indicate whether the soil may be considered a conducting dielectric or neither. (06 Marks)

15EC36

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Electromagnetics

Time: 3 hrs.

1

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. State and explain Coulomb's law.

(04 Marks)

- b. A charge $Q_A = -20 \mu c$ is located $A(-6, 4, 7)_m$ and $Q_B = 50 \mu c$ at $B(5, 8, -2)_m$ in free space. Find the force exerted on Q_A by Q_B ? (05 Marks)
- c. Define electric field intensity and electric flux density.

(03 Marks)

d. Calculate the total charge within the volume

 $0 \le \rho \le 0.1$, $0 \le \phi \le \pi$, $2 \le z \le 4$, $\rho_v = \rho^2 z^2 \sin 0.6 \phi$

(04 Marks)

OR

2 a. Obtain an expression for electric field due to infinite line charge.

(06 Marks)

- b. A charge of $-0.3\mu c$ is located at A(-25, 30, 15)cm and a second charge of 0.5 μc is at B(-10, 8, 12)cm. Find E at the origin. (06 Marks)
- c. A uniform line charge of 2 μ c/m is located on the z-axis. Find E in rectangular coordinates at P(1, 2, 3) if the charge exists from $-\infty < z < \infty$. (04 Marks)

Module-2

- 3 a. State and prove Gauss law and derive first Maxwell's equations from it. (05 Marks)
 - b. Given a 60 μ c point charge located at the origin. Find the total electric flux passing through the closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm. (04 Marks)
 - c. State and prove the Divergence theorem.

(05 Marks)

d. Given the electric flux density $D = 0.3r^2 \hat{a}_r$ nc/m² in free space. Find E at the point $P(r = 2, \theta = 25^{\circ}, \phi = 90^{\circ})$. (92 Marks)

OR

4 a. Prove that the work done in moving a charge in the electric field is

 $W = -Q \int_{initial}^{final} E.dl$

State uniqueness theorem.

(06 Marks)

- b. Calculate the work done in moving a 4C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 2x, $\tau = 0$ in the field $E = (5x a_x + 5y a_y) V/m$. (05 Marks)
- c. Show that $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$ with usual notations.

(05 Marks)

Module-3

5 a. Starting from Gauss law, derive Poisson's and Laplace's equations.

(04 Marks)

b. Calculate ρ_V at point P in free space, if $V = 5\rho^2 \cos 2\phi$ at $P(3, \pi/3, 2)$

(06 Marks) (02 Marks)

d. By using Laplace's equation, derive an expression for the capacitance of a parallel plate capacitor.

(04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

State and explain Biot-Savart's law.

(04 Marks)

- b. By using Ampere's law, derive an expression for H, magnetic field intensity due to a coaxial cable.
- c. Evaluate both sides of Stokes theorem for the field, $H = (6ay\hat{a}_x 3y^2a_y)$ A/m and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of ds be a_z . (06 Marks)

Module-4

- 7 The field $B = (-2a_x + 3a_y + 4\hat{a}_z)mT$ is present in free space. Find the vector force exerted on a straight wire carrying a current of 12A in the a_{AB} direction. Given A(1, 1, 1,) and B(2, 1, 1). (04 Marks)
 - b. Two differential current elements, $I_1\Delta L_1 = 3\times10^{-6}$ A-m at $P_1(1, 0, 0)$ $I_2\Delta L_2 = 3 \times 10^{-6} \left(-0.5\hat{a}_x + 0.4\hat{a}_y + 0.3\hat{a}_z \right) A$ -m at $P_2(2, 2, 2)$ are located in free space. Find the vector force exerted on $I_2\Delta L_2$ by $I_1\Delta L_1$. (06 Marks)
 - Find the magnetization in a magnetic material where
 - (i) $\mu = 1.8 \times 10^{-5} \text{ H/m}$ and H = 120 A/m
 - (ii) $\mu_r = 22$, there are 8.3×10^{22} atoms/m and each atom has a dipole moment of $4.5 \times 10^{-27} \text{ A/m}^2$.
 - (iii) $B = 300 \mu T \times \chi_m = 15$.

(06 Marks)

Derive the Magnetic Boundary Condition?

(06 Marks)

- Let the permittivity is 5 μ H/m in the region 1 where x < 0 and 20 μ H/m in the region 2 where x > 0, and if $H = (300a_x - 400a_x + 500\hat{a}_z) A/m$ and if there is a surface current density $K = (150\hat{a}_{y} - 200\hat{a}_{z})A/m$ at x = 0.
 - Find (i) $|H_{t_1}|$ (ii) $|H_{N_1}|$
- $(iii) \mid H_{t_1} \mid$

(06 Marks)

c. Derive the expression for the energy density in a magnetic field?

(04 Marks)

Module-5

- 9 State Faraday's laws of electromagnetic induction. Further derive Maxwell's equation from it. (04 Marks)
 - b. Find the amplitude of the displacement current density due to an automobile antenna where the magnetic field intensity of an FM signal is $H_x = 0.15 \cos[3.12(3 \times 10^8 t - y)]$ A/m.

(06 Marks)

State Maxwell's equation in both Point form and in Integral form.

(06 Marks)

OR

Derive the wave equation in one dimension for an EM wave travelling in free space. 10

(06 Marks)

- The electric field amplitude of the uniform plane wave in the az direction is 250 V/m. If $E = E_x a_x$ and $\omega = 1.00$ Mrad/s, find (i) the frequency (ii) the wavelength (iii) the period (iv) the amplitude of H. (04 Marks)
- c. State and prove Poynting's theorem.

(06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

CBCS SCHEME

USN							15EC36
	1 1	1 1	- 1		1 8		

Third Semester B.E. Degree Examination, June/July 2018 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Define electric field intensity and flux density and also establish the relationship between them. (04 Marks)
 - b. State and explain Coulomb's law of force between two print charges. (06 Marks)
 - c. Two uniform line charges of densities 4 nc/m and 6nc/m lying x = 0 plane at y = 5m and y = -6m respectively. Find electric field intensity at P(4, 0, 5)m. (06 Marks)

OR

- 2 a. Derive an expression for electric field intensity due to infinite line charge. (08 Marks)
 - b. A volume charge density $\rho_v = \frac{5k}{r}$, where $r \neq 0$, k = constant exists within a sphere of

radius $\frac{a}{2}$. Determine the magnitude of point charge placed at origin which will produce the

same electric field at $r = \frac{a}{2}$.

(08 Marks)

Module-2

- 3 a. Derive the Maxwell's first equation in electrostatics.
- (04 Marks)

b. Derive the expression for continuity of current.

- (06 Marks)
- c. Find the total charge in a volume defined by six planes for which $1 \le x \le 2$; $2 \le y \le 3$; $3 \le z \le 4$. If $\vec{D} = \begin{bmatrix} 4x \, \hat{a}_x + 3y^2 \, \hat{a}_y + 2z^3 \, \hat{a}_z \end{bmatrix} c/m^2$. (06 Marks)

OR

4 a. Briefly explain Gauss's divergence theorem.

- (06 Marks)
- b. Obtain an expression for the energy expanded in moving a point charge in an electric field.

 (06 Marks)
- c. Let $V = \frac{\cos 2\phi}{r}$ in free space in cylindrical system. Find \vec{E} at B(2, 30°, 1). (04 Marks)

Module-3

- 5 a. With the usual notations, deduce the Poisson's and Laplace's equation from the Maxwell's first equation. (06 Marks)
 - b. Determine whether or not the following vector represents a possible electric field. $\vec{E} = 5\cos z \,\hat{a}$, V/m. (04 Marks)
 - c. Prove that the line integral of magnetic field intensity H around a closed path is exactly equal to current 'I' enclosed by that path. (06 Marks)

15EC36

OR

- 6 a. Solve Laplace's equation to determine the capacitance of a coaxial cable when the inner radius is 'a' and outer radius is 'b' respectively. (08 Marks)
 - b. State and explain 'stokes theorem'.

(04 Marks)

c. Given the vector magnetic potential $\vec{A} = x^2 \hat{a}_x + 2yz \hat{a}_y + (-x^2)\hat{a}_z$. Find magnetic flux density. (04 Marks)

Module-4

- 7 a. Derive Lorentz force equation and mention the application of solution. (05 Marks)
 - b. A point charge Q = -1.2C has velocity $\vec{V} = (5\hat{a}_x + 2\hat{a}_y 3\hat{a}_z)$ m/s. Find the magnitude of force exerted on the charge if,
 - i) $\vec{E} = -18 \hat{a}_x + 5 \hat{a}_y 10 \hat{a}_z$ V/m
 - ii) $\vec{B} = -4 \hat{a}_x + 4 \hat{a}_y + 3 \hat{a}_z$ T
 - iii) Both are present simultaneously.

(06 Marks)

(05 Marks)

Briefly explain force between differential current elements.

(05 Marks)

OR

- a. Discuss the magnetic boundary condition at the interface between two different magnetic materials.

 (05 Marks)
 - b. Briefly explain potential energy and forces on magnetic materials.
 - c. A rectangular loop of wire in free space joins A(1, 0, 1), B (3, 0, 1) to C(3, 0, 4) to D (1, 0, 4) to A. The wire carries a current of 6mA flowing in â_z direction from B to C. A filamentary current of 15A flows along the entire z-axis in the â_z direction as shown in Fig.Q.8(c). Find: i) Force on side BC ii) Force on side AB iii) Total force on loop.

(06 Marks)

Fig.Q.8(c)

Module-5

- 9 a. State and explain Faraday's law in point and integral form. (06 Marks)
 - b. Derive Ampere's circuit law in point form and integral form suitable for Time-varying fields.

 (07 Marks)
 - c. Find the angular frequency at which the conduction current and displacement current are equal in medium with $\sigma = 5.6 \times 10^{-6}$ T/m and $\epsilon_r = 40$. (03 Marks)

OR

10 a. State and prove Poynting theorem.

(06 Marks)

b. Briefly explain skin depth and skin effect.

(05 Marks)

- c. A 300MHz uniform plane wave propagation through fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 78$. Calculate:
 - i) Attenuation constant
 - ii) Phase constant
 - iii) Wave length
 - iv) Intrinsic impedance.

(05 Marks)

15EC36

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Engineering Electromagnetics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

State and explain Coulomb's law in vector form.

(05 Marks)

Find the electric field \overline{E} at origin, if the following charge distributions are present in free

i) Point charge 12 nc at P(2, 0, 6).

ii) Uniform line charge of linear charge density 3 nc/m at x = 2, y = 3.

iii) Uniform surface charge of density $P_s = 0.2 \text{ nc/m}^2$ at x = 2. (06 Marks)

Define volume charge density. Also find the total charge within each of the indicated volumes.

i) $0 \le \rho \le 0.1$, $0 \le \phi \le \pi$, $2 \le z \le 4$; $\rho_v = \rho^2 z^2 \sin(0.6\phi)$

ii) Universe: $\rho_v = \frac{e^{-2r}}{r^2}$

(05 Marks)

Define Electric flux and flux density.

(04 Marks)

Given a $60~\mu\text{C}$ point charge located at the origin, find the total electric flux passing through:

i) That portion of the sphere $\gamma = 26$ cm bounded by $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$.

ii) The closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm.

iii) The plane z = 26 cm.

(07 Marks)

Derive the expression for \overline{E} due to infinite line charge of charge density $\rho_L(c/m)$.

(05 Marks)

Module-2

State and prove Gauss law for point charge.

(05 Marks)

b. State and prove divergence theorem.

(05 Marks)

c. In each of the following parts, find value for div \overline{D} at the point specified:

i) $\overline{D} = (2xyz - y^2)\overline{a}_x + (x^2z - 2xy)\overline{a}y + x^2y\overline{a}_z$ c/m² at P_A(2, 3, -1).

ii) $\overline{D} = 2\rho z^2 \sin^2 \phi \overline{a}_{\rho} + \rho z^2 \sin 2\phi \overline{a}_{\phi} + 2\rho^2 z \sin^2 \phi \overline{a}_z c/m^2$ at $P_B(\rho = 2, \phi = 110^\circ, z = -1)$.

(06 Marks)

Define potential difference and absolute potential.

(04 Marks)

A point charge of 6 nc is located at origin in free space, find potential of point p, if p is located at (0.2, -0.4, 0.4) and

i) V = 0 at infinity

ii) V = 0 at (1, 0, 0)

iii) V = 20 V at (-0.5, 1, -1)

(06 Marks)

Derive point form of continuity equation for current.

(06 Marks)

15EC36

M	0	d	11	I	e	_	3
TAT	v	u	ш		·	-55	•

- 5 a. Derive the expression for Poisson's and Laplace's equation. (05 Marks)
 - b. Two plates of parallel plate capacitors are separated by distance 'd' and maintained at potential zero and V₀ respectively. Assuming negligible fringing effect, determine potential at any point between the plates.

 (06 Marks)
 - c. State and prove uniqueness theorem.

(05 Marks)

OR

- 6 a. State and explain Biot-Savart law. (06 Marks)
 - b. Find the magnetic flux density at the centre '0' of a square of sides equal to 5m and carrying 10 amperes of current. (06 Marks)
 - c. At a point p(x, y, z), the components of vector magnetic potential \overline{A} are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \overline{B} at point P.

(04 Marks)

Module-4

7 a. Derive Lorentz force equation.

(05 Marks)

- b. Derive an expression for the force on a differential current element placed in a magnetic field.

 (06 Marks)
- c. A conductor 4m long lies along the y-axis with a current of 10 amps in the \overline{a}_y direction. Find the force on the conductor if the field is $\overline{B} = 0.005 \, \overline{a}_x$ Telsa. (05 Marks)

OR

8 a. Define: i) Magnetization, ii) Permeability.

(04 Marks)

- b. Find the magnetization in a magnetic material where
 - i) $\mu = 1.8 \times 10^5$ (H/m) and 120 (A/m)
 - ii) $\mu_r = 22$, there are 8.3×10^{28} atoms/m³ and each atom has a dipole moment of 4.5×10^{-27} (A/m²) and
 - iii) B = 300 μ T and $\chi_m = 15$.

(06 Marks)

c. Discuss the boundary conditions at the interface between two media of different permeabilities. (06 Marks)

Module-5

- 9 a. State and explain Faraday's law of electromagnetic induction. (04 Mar)
 - b. Find the frequency at which conduction current density and displacement current are equal in a medium with $\sigma = 2 \times 10^{-4} \text{ T/m}$ and $\epsilon_r = 81$.
 - c. List Maxwell's equations in point form and integral form.

(06 Marks)

OR

- 10 a. Obtain solution of the wave equation for a uniform plane wave in free space. (96 Marks)
 - b. State and prove Poynting theorem.

(06 Marks)

c. The depth of penetration in a certain conducting medium is 0.1 m and the frequency of the electromagnetic wave is 1.0 MHz. Find the conductivity of the conducting medium.

(04 Marks)

* * * * *

GRGS Scheme

15EC36

Third Semester B.E. Degree Examination, June/July 2017 **Engineering Electromagnetics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- State vector form of Coloumb's law of force between two point charges and indicate the 1 units of the quantities in the equation.
 - b. Let a point charge $Q_1 = 25nC$ be located at A(4, -2, 7) and charge $Q_2 = 60nC$ be at B(-3, 4, -2). Find \vec{E} at C(1, 2, 3) and find the direction of \vec{E} . (10 Marks)
 - Define electric field intensity due to number of point charge in a vector form. (02 Marks)

- Derive an expression for the electric field intensity due infinite line charge. 2 a. (06 Marks)
 - Define electric flux density. Find \vec{D} in Cartesian co-ordinate system at a point p(6, 8, -10) due to a point charge of 40mC at the origin and a uniform line charge of $\rho_L = 40\mu\text{C/m}$ on the z-axis. (10 Marks)

Module-2

State and prove Gauss law as applied to an electric field. 3

(06 Marks)

Given that $\vec{A} = 3\theta e^{-r} \hat{a}_r - 2z\hat{a}_z$ in the cylindrical co-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by r = 2, z = 0 and z = 5. (10 Marks)

OR

- Define the electric scalar potential. Derive an expression for potential due to point charge. 4 (06 Marks)
 - A point charge of 6nC is located at the origin in free space find potential of point P if P is located at (0.2, -0.4, 0.4) and i) V =0 at infinity ii) V = 0 at (1, 0, 0) iii) V = 20V at (-0.5, 1, -1). (10 Marks)

Module-3

- Starting with point form of Gauss law deduce Poisson's and Laplace's equation. a. (03 Marks)
 - State and Prove uniqueness theorem

(05 Marks)

- Find V at (2, 1, 3) for the field of
 - i) 2 co-axial conducting cylinders V = 20V at $\rho = 3m$
 - ii) 2 concentric conducting spheres V = 50V at r = 3m and V = 20V at r = 5m. (08 Marks)

OR

State and explain Biot – Savart's law.

(04 Marks)

Evaluate both sides of the Stoke's theorem for the field $H = 6xy\hat{a}_x - 3y^2\hat{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5, -1 \le y \le 1, z = 0$. Let the positive direction of ds be â. (08 Marks)

1 of 2

15EC36

At a point p(x, y, z) the components of vector magnetic potential \vec{A} are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \vec{B} at point P.

A point charge of Q = -1.2C has velocity

 $\vec{V} = (5\hat{a}_x + 2\hat{a}_y - 3\hat{a}_z)$ m/s. Find the magnitude of the force exerted on the charge if

- i) $\vec{E} = -18\hat{a}_x + 5\hat{a}_y 10\hat{a}_z \text{ V/m}$
- ii) $\vec{B} = -4\hat{a}_x + 4\hat{a}_y + 3\hat{a}_z$ T
- iii) Both are present simultaneously. (08 Marks)
- Derive an expression for the force on a differential current element placed in a magnetic field. (04 Marks)
- A conductor 4m long lies along the y-axis with a current of 10.0A in the â, direction. Find the force on the conductor if the field in the region is $\vec{B} = 0.005 \hat{a}_{v} T$. (04 Marks)

OR

- If $\vec{B} = 0.05x \,\hat{a}_y T$ in a material for which $\chi_m = 2.5$. Find
 - iv) \vec{M} v) \vec{J} vi) \vec{J}_{L} iii) H i) μ_r ii) μ (08 Marks)
 - Write a on magnetic circuits (04 Marks) (04 Marks)
 - Write a note on forces on magnetic materials.

Module-5

- Explain Displacement current density and conduction current density. (04 Marks)
 - List Maxwell's equations for steady and time varying fields in i) Point form ii) Integral from. (06 Marks)
 - Do the fields $\vec{E} = E_m \sin x \sin t \hat{a}_y$ and $\vec{H} = \frac{E_m}{\mu_o} \cos x \cos t \hat{a}_z$ satisfy Maxwell's equations?

(06 Marks)

- a. What is Forward travelling wave and Backward travelling wave in free space? 10 (02 Marks)
 - A uniform plane wave in free space is given by $E_s = 200 \ [\underline{30}^{\circ} \cdot e^{-j250z} \ \hat{a}_x \ V/m.$

Find β , w, f, λ , η , $|\vec{H}|$ (06 Marks)

State and prove Poynting theorem (08 Marks)

CBCS Scheme

		- 3			 	
USN				5		
	1 1					

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Point charges of 50 nano-coulomb each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A. (08 Marks)
 - b. Define electric field intensity and electric flux density.

(04 Marks)

c. A uniform line charge of infinite length with ρ_L =40 nc/m lies along z axis. Find \bar{E} at (-2, 2, 8) in air. (04 Marks)

OR

- 2 a. Derive the expression for electric field intensity due to infinite line charge. (08 Marks)
 - b. Two particles having charges 2nano-coulomb and 5nano-coulomb are spaced 80 cm apart. Determine the electric field intensity at point "A" situated at a distance of 0.5 m from each of the two particles. Assume dielectric constant of 5. (08 Marks)

Module-2

- 3 a. Evaluate both sides of the divergence theorem for the field $\vec{D} = 2xy \hat{a} x + x^2 \hat{a} yc/m^2$ and the rectangular parallel piped formed by the planes x = 0 and 1, y = 0 and 2, and z = 0 and 3.
 - (08 Marks)
 - b. Derive the expression for equation of continuity.

- (06 Marks)
- c. Give the vector density $J = 10\rho^2 z \, \hat{a} \, \rho 4\rho \cos^2 \phi \, \hat{a} \, \rho$ mA/m². Determine the total current flowing outward through the circular band. $\rho = 3$, $0 < \phi < 2\pi$, 2 < z < 2.8. (02 Marks)

OR

4 a. State and explain Gauss law in point form.

- (05 Marks)
- b. Given the electric field $\overline{E} = 2x \, \hat{a}_x 4y \, \hat{a}_y$ v/m. Find the work done in moving a point charge +2C from (2, 0, 0,) to (0, 0, 0) and then form (0, 0, 0) to (0, 2, 0). (05 Marks)
- c. A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2} v$. Find the electric flux density at the point (3, 60°, 25°) in spherical co-ordinates. (06 Marks)

Module-3

5 a. State and explain uniqueness theorem.

- (08 Marks)
- b. Determine the magnetic field intensity H at point P(0.4, 0.3, 0), if the 8A current in a conductor inward from infinity to origin on the x axis and outward to infinity along y axis.

 (08 Marks)

15EC36

OR

- 6 a. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given the potential field $V = 6\rho\phi Z$ volts. (08 Marks)
 - b. Explain the concepts of scalar and vector magnetic potential.

(08 Marks)

Module-4

7 a. Derive an equation for the magnetic force between two differential current elements.

(06 Marks)

- b. Find the magnetization in a material where : i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) $\mu_r = 22$. There are 8.3×10^{28} atom/m³ and each atom has a dipole moment of 4.5×10^{-27} A/m². iii) B = 300 μ T and $X_{on} = 15$.
- c. A conductor 4m long lies along the y axis with a current of 10A in the \overline{ay} direction. Find the force on the conductor if the field in the region is $\overline{B} = 0.005\overline{ax}$ Tesla. (04 Marks)

OR

- 8 a. Find the expression for force on differential current element moving in a steady magnetic field. Deduce the result to a straight conductor in a uniform magnetic field. (08 Marks)
 - b. For region 1, $\mu_1 = 4\mu H/m$ and for region 2, $\mu_2 = 6\mu$ H/m. The regions are separated by z = 0 plane. The surface current density at the boundary is $\overline{K} = 100 \overline{ax}$ A/m. Find \overline{B}_2 if

$$\overline{B}_1 = 2 \hat{a} x - 3 \hat{a} y + \hat{a} z$$
 militesla for $z > 0$.

(08 Marks)

Module-5

9 a. For the given medium $\varepsilon = 4 \times 10^{-9}$ F/m and $\sigma = 0$. Find 'K' so that the following pair of fields satisfy Maxwell's equation :

$$\overline{E} = (20y - kt)\overline{ax} \text{ v/m}$$

(08 Marks)

- $\overline{H} = (y + 2 \times 10^6 \text{ t}) \overline{az} \text{ A/m}$
- b. A plane wave of 16 GHz frequency and E = 10 v/m propagates through the body of salt water having constants $\varepsilon = 100$, $\mu_r = 1$ and $\sigma = 100$ S/m. Determine attenuation constant, phase shift, phase velocity and intrinsic impedance of the medium and depth of penetration. (08 Marks)

OR

10 a. State and explain Poynthing theorem.

(08 Marks)

- b. Find the amplitude of displacement current density in the free space within a large power distribution transformer where $\overline{H} = 10^6 \cos(377t + 1.2566 \times 10^{-6} z)$ $\stackrel{\triangle}{ay}$ A/m. (05 Marks)
- c. The depth of penetration in a conducting medium is 0.1m and the frequency of the electromagnetic wave is 1 MHz. Find the conductivity of the conducting medium. (03 Marks)

* * * * *

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

CBCS Scheme

USN 1 8 B 1 5 E C O 3 4

15EC36

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Point charges of 50 nano-coulomb each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A. (08 Marks)
 - b. Define electric field intensity and electric flux density.

(04 Marks)

c. A uniform line charge of infinite length with ρ_L =40 nc/m lies along z axis. Find \bar{E} at (-2, 2, 8) in air. (04 Marks)

OR

- 2 a. Derive the expression for electric field intensity due to infinite line charge. (08 Marks)
 - b. Two particles having charges 2nano-coulomb and 5nano-coulomb are spaced 80 cm apart. Determine the electric field intensity at point "A" situated at a distance of 0.5 m from each of the two particles. Assume dielectric constant of 5. (08 Marks)

Module-2

- 3 a. Evaluate both sides of the divergence theorem for the field $\overline{D} = 2xy \, \hat{a} \, x + x^2 \, \hat{a} \, yc/m^2$ and the rectangular parallel piped formed by the planes x = 0 and 1, y = 0 and 2, and z = 0 and 3.
 - b. Derive the expression for equation of continuity.

(08 Marks) (06 Marks)

c. Give the vector density $J = 10\rho^2 z \hat{a} \rho - 4\rho \cos^2 \phi \hat{a} \rho$ mA/m². Determine the total current flowing outward through the circular band. $\rho = 3$, $0 < \phi < 2\pi$, 2 < z < 2.8. (02 Marks)

OR

4 a. State and explain Gauss law in point form.

(05 Marks)

- b. Given the electric field $\overline{E} = 2x \, \hat{a}_x 4y \, \hat{a}_y$ v/m. Find the work done in moving a point charge +2C from (2, 0, 0,) to (0, 0, 0) and then form (0, 0, 0) to (0, 2, 0). (05 Marks)
- c. A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2} v$. Find the electric flux density at the point (3, 60°, 25°) in spherical co-ordinates. (06 Marks)

Module-3

5 a. State and explain uniqueness theorem.

(08 Marks)

b. Determine the magnetic field intensity H at point P(0.4, 0.3, 0), if the 8A current in a conductor inward from infinity to origin on the x axis and outward to infinity along y axis.

15EC36

OR

- 6 a. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given the potential field $V = 6\rho\phi Z$ volts. (08 Marks)
 - b. Explain the concepts of scalar and vector magnetic potential.

(08 Marks)

Module-4

7 a. Derive an equation for the magnetic force between two differential current elements.

(06 Marks)

- b. Find the magnetization in a material where : i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) $\mu_r = 22$. There are 8.3×10^{28} atom/m³ and each atom has a dipole moment of 4.5×10^{-27} A/m². iii) B = 300 μ T and $X_{on} = 15$.
- c. A conductor 4m long lies along the y axis with a current of 10A in the \overline{ay} direction. Find the force on the conductor if the field in the region is $\overline{B} = 0.005\overline{ax}$ Tesla. (04 Marks)

OR

- 8 a. Find the expression for force on differential current element moving in a steady magnetic field. Deduce the result to a straight conductor in a uniform magnetic field. (08 Marks)
 - b. For region 1, $\mu_1 = 4\mu H/m$ and for region 2, $\mu_2 = 6\mu H/m$. The regions are separated by z = 0 plane. The surface current density at the boundary is $\overline{K} = 100 \overline{ax} A/m$. Find \overline{B}_2 if

$$\overline{B}_1 = 2\hat{a} x - 3\hat{a} y + \hat{a} z$$
 militesla for $z > 0$. (08 Marks)

Module-5

9 a. For the given medium $\varepsilon = 4 \times 10^{-9}$ F/m and $\sigma = 0$. Find 'K' so that the following pair of fields satisfy Maxwell's equation:

$$\overline{E} = (20y - kt)\overline{ax} \quad v/m$$

(08 Marks)

 $\overline{H} = (y + 2 \times 10^6 \text{ t}) \overline{\text{az}} \text{ A/m}$ A plane wave of 16 GHz f

b. A plane wave of 16 GHz frequency and E = 10 v/m propagates through the body of salt water having constants $\varepsilon = 100$, $\mu_r = 1$ and $\sigma = 100 \text{ S/m}$. Determine attenuation constant, phase shift, phase velocity and intrinsic impedance of the medium and depth of penetration. (08 Marks)

OR

10 a. State and explain Poynthing theorem.

(08 Marks)

- b. Find the amplitude of displacement current density in the free space within a large power distribution transformer where $\overline{H} = 10^6 \cos(377t + 1.2566 \times 10^{-6} z)$ $\stackrel{\wedge}{\text{ay}}$ A/m. (05 Marks)
- c. The depth of penetration in a conducting medium is 0.1m and the frequency of the electromagnetic wave is 1 MHz. Find the conductivity of the conducting medium. (03 Marks)

* * * * *